Кватернионы - Definition. Was ist Кватернионы
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Кватернионы - definition

СИСТЕМА ГИПЕРКОМПЛЕКСНЫХ ЧИСЕЛ, ОБРАЗУЮЩАЯ ВЕКТОРНОЕ ПРОСТРАНСТВО РАЗМЕРНОСТЬЮ ЧЕТЫРЕ НАД ПОЛЕМ ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Кватернионы; Целые кватернионы; Алгебра кватернионов; ℍ; Тело кватернионов
  • трёх степеней свободы]], но окончательная свобода меньших колец зависит от положения больших колец
  • Уильям Роуэн Гамильтон]] открыл формулу перемножения кватернионов»<ref>В письме своему сыну Арчибальду от 5 августа 1865 года Гамильтон пишет: «…Но, конечно, надпись уже стёрлась» (''Л. С. Полак'' Вариационные принципы механики, их развитие и применение в физике.— М.: Физматгиз, 1960.— С.103-104)</ref></center>

Кватернион         
Кватернио́ны (от , по четыре) — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел.
Кватернионы         
(от лат. quaterni - по четыре)

система чисел, предложенная в 1843 англ. учёным У. Гамильтоном. К. возникли при попытках найти обобщение комплексных чисел (См. Комплексные числа) х + iy, где х и у- действительные числа, i - базисная единица с условием i2 = -1. Как известно, комплексные числа изображаются геометрически точками плоскости, и действия над ними соответствуют простейшим геометрическим преобразованиям плоскости (сдвигу, вращению, растяжению или сжатию и их комбинациям). Поиски числовой системы, которая геометрически реализовалась бы с помощью точек 3-мерного пространства, привели к установлению того, что из точек пространства трёх и выше трёх измерений нельзя "устроить" числовую систему, в которой алгебраические операции сохраняли бы все свойства сложения и умножения действительных или комплексных чисел. Однако если отказаться от одного свойства - коммутативности (переместительности) умножения, - сохранив все остальные свойства сложения и умножения, то из точек пространства четырех измерений можно устроить числовую систему (в пространстве трех, пяти и даже выше измерений нельзя устроить даже такой системы чисел). Числа, реализуемые в 4-мерном пространстве и называются кватернионами. К. представляют собой линейную комбинацию четырёх "базисных единиц" 1, i, j, k: X=xo (1+x1+x2j+x3k, где хо, х1, x2, х3 - действительные числа. Действия над К. производятся по обычным правилам действия над многочленами относительно 1, i, j, k (нельзя лишь пользоваться переместительным законом умножения) с учётом правил умножения базисных единиц, указанных в таблице

--------------------------------------------

| | 1 | i | j | k |

|-------------------------------------------|

| 1 | 1 | i | J | k |

|-------------------------------------------|

| I | i | -1 | k | -j |

|-------------------------------------------|

| j | j | -k | -1 | i |

|-------------------------------------------|

| k | k | J | -i | Кватернионы! |

--------------------------------------------

Из таблицы видно, что 1 играет poль обычной единицы и, следовательно, в записи К. может быть опущена:

X=xo+x1i+x2j+x3k.

(1)

В К. (1) различают скалярную часть хо и векторную часть

V= x1i +x2j+x3k, так что X=xo+V.

Если хо = 0, то кватернион V наз. вектором; он может отождествляться с обычными 3-мерными Векторами.

В середине 19 в. К. воспринимались как обобщение понятия о числе, призванное играть в науке столь же значительную роль, как и комплексные числа. Эта точка зрения подкреплялась и тем, что были найдены приложения К. к электродинамике и механике. Однако Векторное исчисление в его современной форме вытеснило К. из этих областей. Ясно, что роль К. ни в какой мере не может быть сравнима с ролью комплексных чисел, имеющих многочисленные и разнообразные приложения в различных отраслях науки и техники.

Лит.: см. при ст. Гиперкомплексные числа.

Таблица к ст. Кватернионы.

КВАТЕРНИОН         
(от лат. quaterni - по четыре), обобщение понятия комплексного числа. Кватернион имеет вид: a+bi+cj+dk, где a, b, c, d - действительные числа, а i, j, k - три специальные единицы, аналогичные мнимой единице. Для кватерниона справедливы все основные законы действий, кроме коммутативности умножения.

Wikipedia

Кватернион

Кватернио́ны (от лат. quaterni, по четыре) — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом H {\displaystyle \mathbb {H} } . Предложены Уильямом Гамильтоном в 1843 году.

Кватернионы удобны для описания изометрий трёх- и четырёхмерного евклидовых пространств и поэтому получили широкое распространение в механике. Также их используют в вычислительной математике — например, при создании трёхмерной графики.

Анри Пуанкаре писал о кватернионах: «Их появление дало мощный толчок развитию алгебры; исходя от них, наука пошла по пути обобщения понятия числа, придя к концепциям матрицы и линейного оператора, пронизывающим современную математику. Это была революция в арифметике, подобная той, которую сделал Лобачевский в геометрии».

Was ist Кватернион - Definition